The Ragozzine research group studies exoplanets and Kuiper Belt Objects using theoretical orbital dynamics, advanced statistical techniques, computational data analysis, and the best astronomical data. 

Selected Publications

Thumbnail of figure from publication
New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T-0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R-P / R-star), reduced semimajor axis (d / R-star), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2R(circle plus). compared to 53% for candidates larger than 2R.) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant.
Thumbnail of figure from publication
We present a study of the relative sizes of planets within the multiple-candidate systems discovered with the Kepler mission. We have compared the size of each planet to the size of every other planet within a given planetary system after correcting the sample for detection and geometric biases. We find that for planet pairs for which one or both objects are approximately Neptune-sized or larger, the larger planet is most often the planet with the longer period. No such size-location correlation is seen for pairs of planets when both planets are smaller than Neptune. Specifically, if at least one planet in a planet pair has a radius of greater than or similar to 3R(circle plus), 68% +/- 6% of the planet pairs have the inner planet smaller than the outer planet, while no preferred sequential ordering of the planets is observed if both planets in a pair are smaller than less than or similar to 3 R-circle plus.
Thumbnail of figure from publication
We measure the mass and radius of the star and planet in the TrES-2 system using 2.7 years of observations by the Kepler spacecraft. The light curve shows evidence for ellipsoidal variations and Doppler beaming on a period consistent with the orbital period of the planet with amplitudes of 2.79(-0.62)(+0.44) and 3.44(-0.37)(+0.32) parts per million (ppm), respectively, and a difference between the dayside and the nightside planetary flux of 3.41(-0.82)(+0.55) ppm. We present an asteroseismic analysis of solar-like oscillations on TrES-2A which we use to calculate the stellar mass of 0.94 +/- 0.05 M-circle dot and radius of 0.95 +/- 0.02 R-circle dot. Using these stellar parameters, a transit model fit and the phase-curve variations, we determine the planetary radius of 1.162(-0.024)(+0.020) R-Jup and derive a mass for TrES-2b from the photometry of 1.44 +/- 0.21 M-Jup. The ratio of the ellipsoidal variation to the Doppler beaming amplitudes agrees to better than 2 sigma with theoretical predications, while our measured planet mass and radius agree within 2s of previously published values based on spectroscopic radial velocity measurements. We measure a geometric albedo of 0.0136(-0.0033)(+0.0022) and an occultation (secondary eclipse) depth of 6.5(-1.8)(+1.7) ppm which we combined with the day/night planetary flux ratio to model the atmosphere of TrES-2b. We find that an atmosphere model that contains a temperature inversion is strongly preferred. We hypothesize that the Kepler bandpass probes a significantly greater atmospheric depth on the night side relative to the day side.
Thumbnail of figure from publication
We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M-A = 0.949+/-0.059 M-circle dot and R-A = 1.757+/-0.034 R-circle dot) paired with a low-mass star (M-B = 0.249+/-0.010 M-circle dot and R-B = 0.2724+/-0.0053 R-circle dot) in a mildly eccentric (e = 0.103) orbit. A total of eight transits due to a circumbinary planet crossing the primary star were identified in the Kepler light curve (using Kepler Quarters 1-11), from which a planetary period of 105.595+/-0.053 days can be established. A photometric dynamical model fit to the radial velocity curve and Kepler light curve yields a planetary radius of 4.35+/-0.11 R-circle plus, or equivalently 1.12+/-0.03 R-Nep. Since the planet is not sufficiently massive to observably alter the orbit of the binary from Keplerian motion, we can only place an upper limit on the mass of the planet of 122 M-circle dot(7.11 M-Nep or equivalently 0.384 M-Jup) at 95% confidence. This upper limit should decrease as more Kepler data become available.
Thumbnail of figure from publication
We report the detection of Kepler-47, a system consisting of two planets orbiting around an eclipsing pair of stars. The inner and outer planets have radii 3.0 and 4.6 times that of Earth, respectively. The binary star consists of a Sun-like star and a companion roughly one-third its size, orbiting each other every 7.45 days. With an orbital period of 49.5 days, 18 transits of the inner planet have been observed, allowing a detailed characterization of its orbit and those of the stars. The outer planet's orbital period is 303.2 days, and although the planet is not Earth-like, it resides within the classical "habitable zone," where liquid water could exist on an Earth-like planet. With its two known planets, Kepler-47 establishes that close binary stars can host complete planetary systems.
Thumbnail of figure from publication
Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results of an updated transit timing variation (TTV) analysis for 1481 planet candidates based on transit times measured during the first sixteen months of Kepler observations. We present 39 strong TTV candidates based on long-term trends (2.8% of suitable data sets). We present another 136 weaker TTV candidates (9.8% of suitable data sets) based on the excess scatter of TTV measurements about a linear ephemeris. We anticipate that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We find that the occurrence rate of planet candidates that show TTVs is significantly increased (similar to 68%) for planet candidates transiting stars with multiple transiting planet candidates when compared to planet candidates transiting stars with a single transiting planet candidate.