The Ragozzine research group studies exoplanets and Kuiper Belt Objects using theoretical orbital dynamics, advanced statistical techniques, computational data analysis, and the best astronomical data. 

Selected Publications

Thumbnail of figure from publication
By Benjamin C. N. Proudfoot, Darin A. Ragozzine, Meagan L. Thatcher, Dallin J. Spencer, Tahina M. Alailima, Sawyer Allen, Penelope C. Bowden, Susanne Byrd, Conner D. Camacho, Gibson H. Campbell, Edison P. Carlisle, Jacob A. Christensen, Noah K. Christensen, Kaelyn Clement, Benjamin J. Derieg, Mara K. Dille, Cristian Dorrett, Abigail L. Ellefson, Taylor S. Fleming, N. J. Freeman, Ethan J. Gibson, William G. Giforos, Jacob A. Guerrette, Olivia Haddock, S. Ashton Hammond, Zachary A. Hampson, Joshua D. Hancock, Madeline S. Harmer, Joseph R. Henderson, Chandler R. Jensen, David Jensen, Ryleigh E. Jensen, Joshua S. Jones, Cameron C. Kubal, Jacob N. Lunt, Stephanie Martins, McKenna Matheson, Dahlia Maxwell, Timothy D. Morrell, McKenna M. Myckowiak, Maia A. Nelsen, Spencer T. Neu, Giovanna G. Nuccitelli, Kayson M. Reardon, Austin S. Reid, Kenneth G. Richards, Megan R. W. Robertson, Tanner D. Rydalch, Conner B. Scoresby, Ryan L. Scott, Zacory D. Shakespear, Elliot A. Silveira, Grace C. Steed, Christiana Z. Suggs, Garrett D. Suggs, Derek M. Tobias, Matthew L. Toole, McKayla L. Townsend, Kade L. Vickers, Collin R. Wagner, Madeline S. Wright, and Emma M. A. Zappala (et al.)
Abstract:

About 40 trans-Neptunian binaries (TNBs) have fully determined orbits with about 10 others being solved except for breaking the mirror ambiguity. Despite decades of study, almost all TNBs have only ever been analyzed with a model that assumes perfect Keplerian motion (e.g., two point masses). In reality, all TNB systems are non-Keplerian due to nonspherical shapes, possible presence of undetected system components, and/or solar perturbations. In this work, we focus on identifying candidates for detectable non-Keplerian motion based on sample of 45 well-characterized binaries. We use MultiMoon, a non-Keplerian Bayesian inference tool, to analyze published relative astrometry allowing for nonspherical shapes of each TNB system's primary. We first reproduce the results of previous Keplerian fitting efforts with MultiMoon, which serves as a comparison for the non-Keplerian fits and confirms that these fits are not biased by the assumption of a Keplerian orbit. We unambiguously detect non-Keplerian motion in eight TNB systems across a range of primary radii, mutual orbit separations, and system masses. As a proof of concept for non-Keplerian fitting, we perform detailed fits for (66652) Borasisi-Pabu, possibly revealing a J2 ≈ 0.44, implying Borasisi (and/or Pabu) may be a contact binary or an unresolved compact binary. However, full confirmation of this result will require new observations. This work begins the next generation of TNB analyses that go beyond the point mass assumption to provide unique and valuable information on the physical properties of TNBs with implications for their formation and evolution.

Thumbnail of figure from publication
By Darin Ragozzine (et al.)
Abstract:

We present the methods and results from the discovery and photometric measurement of 26 bright VR > 24 trans-Neptunian objects (TNOs) during the first year (2019–20) of the DECam Ecliptic Exploration Project (DEEP). The DEEP survey is an observational TNO survey with wide sky coverage, high sensitivity, and a fast photometric cadence. We apply a computer vision technique known as a progressive probabilistic Hough transform to identify linearly moving transient sources within DEEP photometric catalogs. After subsequent visual vetting, we provide a photometric and astrometric catalog of our TNOs. By modeling the partial lightcurve amplitude distribution of the DEEP TNOs using Monte Carlo techniques, we find our data to be most consistent with an average TNO axis ratio b/a < 0.5, implying a population dominated by non-spherical objects. Based on ellipsoidal gravitational stability arguments, we find our data to be consistent with a TNO population containing a high fraction of contact binaries or other extremely non-spherical objects. We also discuss our data as evidence that the expected binarity fraction of TNOs may be size-dependent.

Thumbnail of figure from publication
By Darin Ragozzine (et al.)
Abstract:

GRS 1747-312 is a bright Low-Mass X-ray Binary in the globular cluster Terzan 6, located at a distance of 9.5 kpc from the Earth. It exhibits regular outbursts approximately every 4.5 months, during which periodic eclipses are known to occur. These eclipses have only been observed in the outburst phase, and are not clearly seen when the source is quiescent. Recent Chandra observations of the source were performed in 2019 June and 2021 April, June, and August. Two of these observations captured the source during its outburst, and showed clear flux decreases at the expected time of eclipse. The other two observations occurred when the source was quiescent. We present the discovery of a dip that occurred during the quiescent state. The dip is of longer duration and its time of occurrence does not fit the ephemeris of the shorter eclipses. We study the physical characteristics of the dip and determine that it has all the properties of an eclipse by an object with a well defined surface. We find that there are several possibilities for the nature of the object causing the 5.3 ks eclipse. First, GRS 1747-312 may be an X-ray triple, with an LMXB orbited by an outer third object, which could be an M-dwarf, brown dwarf, or planet. Secondly, there could be two LMXBs in close proximity to each other, potentially bound together. Whatever the true nature of the eclipser, its presence suggests that the GRS 1747-312 system is exotic.

Thumbnail of figure from publication
By Darin Ragozzine (et al.)
Abstract:

We present the DECam Ecliptic Exploration Project (DEEP) survey strategy, including observing cadence for orbit determination, exposure times, field pointings and filter choices. The overall goal of the survey is to discover and characterize the orbits of a few thousand Trans-Neptunian objects (TNOs) using the Dark Energy Camera (DECam) on the Cerro Tololo Inter-American Observatory Blanco 4 m telescope. The experiment is designed to collect a very deep series of exposures totaling a few hours on sky for each of several 2.7 square degree DECam fields-of-view to achieve approximate depths of magnitude 26.2 using a wide V R filter that encompasses both the V and R bandpasses. In the first year, several nights were combined to achieve a sky area of about 34 square degrees. In subsequent years, the fields have been re-visited to allow TNOs to be tracked for orbit determination. When complete, DEEP will be the largest survey of the outer solar system ever undertaken in terms of newly discovered object numbers, and the most prolific at producing multiyear orbital information for the population of minor planets beyond Neptune at 30 au.

Thumbnail of figure from publication
By Darin Ragozzine (et al.)
Abstract:

We present here the DECam Ecliptic Exploration Project (DEEP), a 3 yr NOAO/NOIRLab Survey that was allocated 46.5 nights to discover and measure the properties of thousands of trans-Neptunian objects (TNOs) to magnitudes as faint as VR similar to 27 mag, corresponding to sizes as small as 20 km diameter. In this paper we present the science goals of this project, the experimental design of our survey, and a technical demonstration of our approach. The core of our project is "digital tracking," in which all collected images are combined at a range of motion vectors to detect unknown TNOs that are fainter than the single exposure depth of VR similar to 23 mag. Through this approach, we reach a depth that is approximately 2.5 mag fainter than the standard LSST "wide fast deep" nominal survey depth of 24.5 mag. DEEP will more than double the number of known TNOs with observational arcs of 24 hr or more, and increase by a factor of 10 or more the number of known small (<50 km) TNOs. We also describe our ancillary science goals, including measuring the mean shape distribution of very small main-belt asteroids, and briefly outline a set of forthcoming papers that present further aspects of and preliminary results from the DEEP program.

Thumbnail of figure from publication
By Darin Ragozzine (et al.)
Abstract:

The Vera C. Rubin Observatory is expected to start the Legacy Survey of Space and Time (LSST) in early to mid-2025. This multiband wide-field synoptic survey will transform our view of the solar system, with the discovery and monitoring of over five million small bodies. The final survey strategy chosen for LSST has direct implications on the discoverability and characterization of solar system minor planets and passing interstellar objects. Creating an inventory of the solar system is one of the four main LSST science drivers. The LSST observing cadence is a complex optimization problem that must balance the priorities and needs of all the key LSST science areas. To design the best LSST survey strategy, a series of operation simulations using the Rubin Observatory scheduler have been generated to explore the various options for tuning observing parameters and prioritizations. We explore the impact of the various simulated LSST observing strategies on studying the solar system's small body reservoirs. We examine what are the best observing scenarios and review what are the important considerations for maximizing LSST solar system science. In general, most of the LSST cadence simulations produce +/- 5% or less variations in our chosen key metrics, but a subset of the simulations significantly hinder science returns with much larger losses in the discovery and light-curve metrics.