The Ragozzine research group studies exoplanets and Kuiper Belt Objects using theoretical orbital dynamics, advanced statistical techniques, computational data analysis, and the best astronomical data. 

Selected Publications

Thumbnail of figure from publication
By D. Ragozzine (et al.)
Abstract: Using precise relative astrometry from the Hubble Space Telescope and the W. M. Keck Telescope, we have determined the orbits and masses of the two dynamically interacting satellites of the dwarf planet (136108) Haumea, formerly 2003 EL61. The orbital parameters of Hi'iaka, the outer, brighter satellite, match well the previously derived orbit. On timescales longer than a few weeks, no Keplerian orbit is sufficient to describe the motion of the inner, fainter satellite Namaka. Using a fully interacting three-point-mass model, we have recovered the orbital parameters of both orbits and the mass of Haumea and Hi'iaka; Namaka's mass is marginally detected. The data are not sufficient to uniquely determine the gravitational quadrupole of the nonspherical primary (described by J(2)). The nearly coplanar nature of the satellites, as well as an inferred density similar to water ice, strengthen the hypothesis that Haumea experienced a giant collision billions of years ago. The excited eccentricities and mutual inclination point to an intriguing tidal history of significant semimajor axis evolution through satellite mean-motion resonances. The orbital solution indicates that Namaka and Haumea are currently undergoing mutual events and that the mutual event season will last for next several years.
Thumbnail of figure from publication
By D. Ragozzine (et al.)
Abstract: The collisional family of Kuiper Belt object (KBO) 2003EL61 opens the possibility for many interesting new studies of processes important in the formation and evolution of the outer solar system. As the first family in the Kuiper Belt, it can be studied using techniques developed for studying asteroid families, although some modifications are necessary. Applying these modified techniques allows for a dynamical study of the 2003 EL61 family. The velocity required to change orbits is used to quantitatively identify objects near the collision. A method for identifying family members that have potentially diffused in resonances ( like 2003 EL61) is also developed. Known family members are among the very closest KBOs to the collision and two new likely family members are identified: 2003 UZ117 and 1999 OY3. We also give tables of candidate family members that require future observations to confirm membership. We estimate that a minimum of similar to 1 Gyr is needed for resonance diffusion to produce the current position of 2003 EL61, implying that the family is likely primordial. Future refinement of the age estimate is possible once ( many) more resonant objects are identified. The ancient nature of the collision contrasts with the seemingly fresh surfaces of known family members, suggesting that our understanding of outer solar system surfaces is incomplete.
Thumbnail of figure from publication
By Darin Ragozzine (et al.)
Abstract: The small bodies in the Solar System are thought to have been highly affected by collisions and erosion. In the asteroid belt, direct evidence of the effects of large collisions can be seen in the existence of separate families of asteroids - a family consists of many asteroids with similar orbits and, frequently, similar surface properties, with each family being the remnant of a single catastrophic impact(1). In the region beyond Neptune, in contrast, no collisionally created families have hitherto been found(2). The third largest known Kuiper belt object, 2003 EL61, however, is thought to have experienced a giant impact that created its multiple satellite system, stripped away much of an overlying ice mantle, and left it with a rapid rotation(3-5). Here we report the discovery of a family of Kuiper belt objects with surface properties and orbits that are nearly identical to those of 2003 EL61. This family appears to be fragments of the ejected ice mantle of 2003 EL61.
Thumbnail of figure from publication
By Darin Ragozzine (et al.)
Abstract:

We present the first set of trans-Neptunian objects (TNOs) observed on multiple nights in data taken from the DECam Ecliptic Exploration Project. Of these 110 TNOs, 105 do not coincide with previously known TNOs and appear to be new discoveries. Each individual detection for our objects resulted from a digital tracking search at TNO rates of motion, using two-to-four-hour exposure sets, and the detections were subsequently linked across multiple observing seasons. This procedure allows us to find objects with magnitudes m VR approximate to 26. The object discovery processing also included a comprehensive population of objects injected into the images, with a recovery and linking rate of at least 94%. The final orbits were obtained using a specialized orbit-fitting procedure that accounts for the positional errors derived from the digital tracking procedure. Our results include robust orbits and magnitudes for classical TNOs with absolute magnitudes H similar to 10, as well as a dynamically detached object found at 76 au (semimajor axis a approximate to 77 au). We find a disagreement between our population of classical TNOs and the CFEPS-L7 three-component model for the Kuiper Belt.

Thumbnail of figure from publication
By Maia A Nelsen, Darin Ragozzine, Benjamin C. N. Proudfoot, and William G. Giforos (et al.)
Abstract:

Dynamically studying trans-Neptunian object (TNO) binaries allows us to measure masses and orbits. Most of the known objects appear to have only two components, except (47171) Lempo, which is the single known hierarchical triple system with three similar-mass components. Though hundreds of TNOs have been imaged with high-resolution telescopes, no other hierarchical triples (or trinaries) have been found among solar system small bodies, even though they are predicted in planetesimal formation models such as gravitational collapse after the streaming instability. By going beyond the point-mass assumption and modeling TNO orbits as non-Keplerian, we open a new window into the shapes and spins of the components, including the possible presence of unresolved "inner" binaries. Here we present evidence for a new hierarchical triple, (148780) Altjira (2001 UQ18), based on non-Keplerian dynamical modeling of the two observed components. We incorporate two recent Hubble Space Telescope observations, leading to a 17 yr observational baseline. We present a new open-source Bayesian point-spread function fitting code called nPSF that provides precise relative astrometry and uncertainties for single images. Our non-Keplerian analysis measures a statistically significant (∼2.5σ) nonspherical shape for Altjira. The measured J2 is best explained as an unresolved inner binary, and an example hierarchical triple model gives the best fit to the observed astrometry. Using an updated non-Keplerian ephemeris (which is significantly different from the Keplerian predictions), we show that the predicted mutual event season for Altjira has already begun, with several excellent opportunities for observations through ∼2030.

Thumbnail of figure from publication
By B. C. N. Proudfoot and D. A. Ragozzine (et al.)
Abstract:

The physical and orbital parameters of trans-Neptunian objects provide valuable information about the solar system's formation and evolution. In particular, the characterization of binaries provides insights into the formation mechanisms that may be playing a role at such large distances from the Sun. Studies show two distinct populations, and (38628) Huya occupies an intermediate position between the unequal-sized binaries and those with components of roughly equal sizes. In this work, we predicted and observed three stellar occultation events by Huya. Huya and its satellitewere detected during occultations in 2021 March and again in 2023 June. Additionally, an attempt to detect Huya in 2023 February resulted in an additional single-chord detection of the secondary. A spherical body with a minimum diameter of D = 165 km can explain the three single-chord observations and provide a lower limit for the satellite size. The astrometry of Huya's system, as derived from the occultations and supplemented by observations from the Hubble Space Telescope and Keck Observatory, provided constraints on the satellite orbit and the mass of the system. Therefore, assuming the secondary is in an equatorial orbit around the primary, the limb fitting was constrained by the satellite orbit position angle. The system density, calculated by summing the most precise measurement of Huya's volume to the spherical satellite average volume, is ρ1 = 1073 ± 66 kg m−3. The density that the object would have assuming a Maclaurin equilibrium shape with a rotational period of 6.725 ± 0.01 hr is ρ2 = 768 ± 42 kg m−3. This difference rules out the Maclaurin equilibrium assumption for the main body shape.